async-channel/tests/unbounded.rs
John Nunley 642c52b0ea
Add explicit web support (#67)
This commit allows async-channel to be used fully in web environments

Signed-off-by: John Nunley <dev@notgull.net>
2023-09-16 21:11:25 -07:00

356 lines
8.4 KiB
Rust

#![allow(clippy::bool_assert_comparison, unused_imports)]
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread::sleep;
use std::time::Duration;
use async_channel::{unbounded, RecvError, SendError, TryRecvError, TrySendError};
use easy_parallel::Parallel;
use futures_lite::{future, prelude::*};
#[cfg(target_family = "wasm")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[cfg(not(target_family = "wasm"))]
fn ms(ms: u64) -> Duration {
Duration::from_millis(ms)
}
#[test]
fn smoke() {
let (s, r) = unbounded();
s.try_send(7).unwrap();
assert_eq!(r.try_recv(), Ok(7));
future::block_on(s.send(8)).unwrap();
assert_eq!(future::block_on(r.recv()), Ok(8));
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
}
#[cfg(all(feature = "std", not(target_family = "wasm")))]
#[test]
fn smoke_blocking() {
let (s, r) = unbounded();
s.send_blocking(7).unwrap();
assert_eq!(r.try_recv(), Ok(7));
s.send_blocking(8).unwrap();
assert_eq!(future::block_on(r.recv()), Ok(8));
future::block_on(s.send(9)).unwrap();
assert_eq!(r.recv_blocking(), Ok(9));
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
}
#[test]
fn capacity() {
let (s, r) = unbounded::<()>();
assert_eq!(s.capacity(), None);
assert_eq!(r.capacity(), None);
}
#[test]
fn len_empty_full() {
let (s, r) = unbounded();
assert_eq!(s.len(), 0);
assert_eq!(s.is_empty(), true);
assert_eq!(s.is_full(), false);
assert_eq!(r.len(), 0);
assert_eq!(r.is_empty(), true);
assert_eq!(r.is_full(), false);
future::block_on(s.send(())).unwrap();
assert_eq!(s.len(), 1);
assert_eq!(s.is_empty(), false);
assert_eq!(s.is_full(), false);
assert_eq!(r.len(), 1);
assert_eq!(r.is_empty(), false);
assert_eq!(r.is_full(), false);
future::block_on(r.recv()).unwrap();
assert_eq!(s.len(), 0);
assert_eq!(s.is_empty(), true);
assert_eq!(s.is_full(), false);
assert_eq!(r.len(), 0);
assert_eq!(r.is_empty(), true);
assert_eq!(r.is_full(), false);
}
#[cfg(not(target_family = "wasm"))]
#[test]
fn try_recv() {
let (s, r) = unbounded();
Parallel::new()
.add(move || {
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
sleep(ms(1500));
assert_eq!(r.try_recv(), Ok(7));
sleep(ms(500));
assert_eq!(r.try_recv(), Err(TryRecvError::Closed));
})
.add(move || {
sleep(ms(1000));
future::block_on(s.send(7)).unwrap();
})
.run();
}
#[cfg(not(target_family = "wasm"))]
#[test]
fn recv() {
let (s, r) = unbounded();
Parallel::new()
.add(move || {
assert_eq!(future::block_on(r.recv()), Ok(7));
sleep(ms(1000));
assert_eq!(future::block_on(r.recv()), Ok(8));
sleep(ms(1000));
assert_eq!(future::block_on(r.recv()), Ok(9));
assert_eq!(future::block_on(r.recv()), Err(RecvError));
})
.add(move || {
sleep(ms(1500));
future::block_on(s.send(7)).unwrap();
future::block_on(s.send(8)).unwrap();
future::block_on(s.send(9)).unwrap();
})
.run();
}
#[test]
fn try_send() {
let (s, r) = unbounded();
for i in 0..1000 {
assert_eq!(s.try_send(i), Ok(()));
}
drop(r);
assert_eq!(s.try_send(777), Err(TrySendError::Closed(777)));
}
#[test]
fn send() {
let (s, r) = unbounded();
for i in 0..1000 {
assert_eq!(future::block_on(s.send(i)), Ok(()));
}
drop(r);
assert_eq!(future::block_on(s.send(777)), Err(SendError(777)));
}
#[test]
fn send_after_close() {
let (s, r) = unbounded();
future::block_on(s.send(1)).unwrap();
future::block_on(s.send(2)).unwrap();
future::block_on(s.send(3)).unwrap();
drop(r);
assert_eq!(future::block_on(s.send(4)), Err(SendError(4)));
assert_eq!(s.try_send(5), Err(TrySendError::Closed(5)));
}
#[test]
fn recv_after_close() {
let (s, r) = unbounded();
future::block_on(s.send(1)).unwrap();
future::block_on(s.send(2)).unwrap();
future::block_on(s.send(3)).unwrap();
drop(s);
assert_eq!(future::block_on(r.recv()), Ok(1));
assert_eq!(future::block_on(r.recv()), Ok(2));
assert_eq!(future::block_on(r.recv()), Ok(3));
assert_eq!(future::block_on(r.recv()), Err(RecvError));
}
#[test]
fn len() {
let (s, r) = unbounded();
assert_eq!(s.len(), 0);
assert_eq!(r.len(), 0);
for i in 0..50 {
future::block_on(s.send(i)).unwrap();
assert_eq!(s.len(), i + 1);
}
for i in 0..50 {
future::block_on(r.recv()).unwrap();
assert_eq!(r.len(), 50 - i - 1);
}
assert_eq!(s.len(), 0);
assert_eq!(r.len(), 0);
}
#[test]
fn receiver_count() {
let (s, r) = unbounded::<()>();
let receiver_clones: Vec<_> = (0..20).map(|_| r.clone()).collect();
assert_eq!(s.receiver_count(), 21);
assert_eq!(r.receiver_count(), 21);
drop(receiver_clones);
assert_eq!(s.receiver_count(), 1);
assert_eq!(r.receiver_count(), 1);
}
#[test]
fn sender_count() {
let (s, r) = unbounded::<()>();
let sender_clones: Vec<_> = (0..20).map(|_| s.clone()).collect();
assert_eq!(s.sender_count(), 21);
assert_eq!(r.sender_count(), 21);
drop(sender_clones);
assert_eq!(s.receiver_count(), 1);
assert_eq!(r.receiver_count(), 1);
}
#[cfg(not(target_family = "wasm"))]
#[test]
fn close_wakes_receiver() {
let (s, r) = unbounded::<()>();
Parallel::new()
.add(move || {
assert_eq!(future::block_on(r.recv()), Err(RecvError));
})
.add(move || {
sleep(ms(1000));
drop(s);
})
.run();
}
#[cfg(not(target_family = "wasm"))]
#[test]
fn spsc() {
const COUNT: usize = 100_000;
let (s, r) = unbounded();
Parallel::new()
.add(move || {
for i in 0..COUNT {
assert_eq!(future::block_on(r.recv()), Ok(i));
}
assert_eq!(future::block_on(r.recv()), Err(RecvError));
})
.add(move || {
for i in 0..COUNT {
future::block_on(s.send(i)).unwrap();
}
})
.run();
}
#[cfg(not(target_family = "wasm"))]
#[test]
fn mpmc() {
const COUNT: usize = 25_000;
const THREADS: usize = 4;
let (s, r) = unbounded::<usize>();
let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
Parallel::new()
.each(0..THREADS, |_| {
for _ in 0..COUNT {
let n = future::block_on(r.recv()).unwrap();
v[n].fetch_add(1, Ordering::SeqCst);
}
})
.each(0..THREADS, |_| {
for i in 0..COUNT {
future::block_on(s.send(i)).unwrap();
}
})
.run();
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
for c in v {
assert_eq!(c.load(Ordering::SeqCst), THREADS);
}
}
#[cfg(not(target_family = "wasm"))]
#[test]
fn mpmc_stream() {
const COUNT: usize = 25_000;
const THREADS: usize = 4;
let (s, r) = unbounded::<usize>();
let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
let v = &v;
Parallel::new()
.each(0..THREADS, {
let r = r.clone();
move |_| {
futures_lite::pin!(r);
for _ in 0..COUNT {
let n = future::block_on(r.next()).unwrap();
v[n].fetch_add(1, Ordering::SeqCst);
}
}
})
.each(0..THREADS, |_| {
for i in 0..COUNT {
future::block_on(s.send(i)).unwrap();
}
})
.run();
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
for c in v {
assert_eq!(c.load(Ordering::SeqCst), THREADS);
}
}
#[cfg(all(feature = "std", not(target_family = "wasm")))]
#[test]
fn weak() {
let (s, r) = unbounded::<usize>();
// Create a weak sender/receiver pair.
let (weak_s, weak_r) = (s.downgrade(), r.downgrade());
// Upgrade and send.
{
let s = weak_s.upgrade().unwrap();
s.send_blocking(3).unwrap();
let r = weak_r.upgrade().unwrap();
assert_eq!(r.recv_blocking(), Ok(3));
}
// Drop the original sender/receiver pair.
drop((s, r));
// Try to upgrade again.
{
assert!(weak_s.upgrade().is_none());
assert!(weak_r.upgrade().is_none());
}
}