Summary: This is an unexpectedly complex follow-up to https://github.com/facebook/rocksdb/issues/13269. This change solves (and detects regressed) inconsistencies between whether a CF's SuperVersion is configured with a preserve/preclude option and whether it gets a usable SeqnoToTimeMapping. Operating with preserve/preclude and no usable mapping is degraded functionality we need to avoid. And no mapping is useful for actually disabling the feature (except with respect to existing SST files, but that's less of a concern for now). The challenge is that how we maintain the DB's SeqnoToTimeMapping can depend on all the column families, and we don't want to iterate over all column families *for each column family* (e.g. on initially creating each). The existing code was a bit relaxed: * On initially creating or re-configuring a CF, we might install an empty mapping, but soon thereafter (after releasing and re-acquiring the DB mutex) re-install another SuperVersion with a useful mapping. The solution here is to refactor the logic so that there's a distinct but related workflow for (a) ensuring a quality set of mappings when we might only be considering a single CF (`EnsureSeqnoToTimeMapping()`), and (b) massaging that set of mappings to account for all CFs (`RegisterRecordSeqnoTimeWorker`) which doesn't need to re-install new SuperVersions because each CF already has good mappings and will get updated SuperVersions when the periodic task adds new mappings. This should eliminate the extra SuperVersion installs associated with preserve/preclude on CF creation or re-configure, making it the same as any other CF. Some more details: * Some refactorings such as removing new_seqno_to_time_mapping from SuperVersionContext. (Now use parameter instead of being stateful.) * Propagate `read_only` aspect of DB to more places so that we can pro-actively disable preserve/preclude on read-only DBs, so that we don't run afoul of the assertion expecting SeqnoToTime entries. * Introduce a utility struct `MinAndMaxPreserveSeconds` for aggregating preserve/preclude settings in a useful way, sometimes on one CF and sometimes across multiple CFs. Much cleaner! (IMHO) * Introduce a function `InstallSuperVersionForConfigChange` that is a superset of `InstallSuperVersionAndScheduleWork` for when a CF is new or might have had a change to its mutable options. * Eliminate redundant re-install SuperVersions of created "missing" CFs in DBImpl::Open. Intended follow-up: * Ensure each flush has an "upper bound" SeqnoToTime entry, which would resolve a FIXME in tiered_compaction_test, but causes enough test churn to deserve its own PR + investigation. Pull Request resolved: https://github.com/facebook/rocksdb/pull/13316 Test Plan: This change is primarily validated by a new assertion in SuperVersion::Init to ensure consistency between (a) presence of any SeqnoToTime mappings in the SuperVersion and (b) preserve/preclude option being currently set. One unit test update was needed because we now ensure at least one SeqnoToTime entry is created on any DB::Open with preserve/preclude, so that there is a lower bound time on all the future data writes. This required a small hack in associating the time with Seqno 1 instead of 0, which is reserved for "unspecified old." Reviewed By: cbi42 Differential Revision: D70540638 Pulled By: pdillinger fbshipit-source-id: bb419fdbeb5a1f115fc429c211f9b8efaf2f56d7
571 lines
17 KiB
C++
571 lines
17 KiB
C++
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
//
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#include "db/seqno_to_time_mapping.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <deque>
|
|
#include <functional>
|
|
#include <queue>
|
|
#include <vector>
|
|
|
|
#include "db/version_edit.h"
|
|
#include "util/string_util.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
SeqnoToTimeMapping::pair_const_iterator SeqnoToTimeMapping::FindGreaterTime(
|
|
uint64_t time) const {
|
|
assert(enforced_);
|
|
return std::upper_bound(pairs_.cbegin(), pairs_.cend(),
|
|
SeqnoTimePair{0, time}, SeqnoTimePair::TimeLess);
|
|
}
|
|
|
|
SeqnoToTimeMapping::pair_const_iterator SeqnoToTimeMapping::FindGreaterEqSeqno(
|
|
SequenceNumber seqno) const {
|
|
assert(enforced_);
|
|
return std::lower_bound(pairs_.cbegin(), pairs_.cend(),
|
|
SeqnoTimePair{seqno, 0}, SeqnoTimePair::SeqnoLess);
|
|
}
|
|
|
|
SeqnoToTimeMapping::pair_const_iterator SeqnoToTimeMapping::FindGreaterSeqno(
|
|
SequenceNumber seqno) const {
|
|
assert(enforced_);
|
|
return std::upper_bound(pairs_.cbegin(), pairs_.cend(),
|
|
SeqnoTimePair{seqno, 0}, SeqnoTimePair::SeqnoLess);
|
|
}
|
|
|
|
uint64_t SeqnoToTimeMapping::GetProximalTimeBeforeSeqno(
|
|
SequenceNumber seqno) const {
|
|
assert(enforced_);
|
|
// Find the last entry with a seqno strictly less than the given seqno.
|
|
// First, find the first entry >= the given seqno (or end)
|
|
auto it = FindGreaterEqSeqno(seqno);
|
|
if (it == pairs_.cbegin()) {
|
|
return kUnknownTimeBeforeAll;
|
|
}
|
|
// Then return data from previous.
|
|
it--;
|
|
return it->time;
|
|
}
|
|
|
|
SequenceNumber SeqnoToTimeMapping::GetProximalSeqnoBeforeTime(
|
|
uint64_t time) const {
|
|
assert(enforced_);
|
|
|
|
// Find the last entry with a time <= the given time.
|
|
// First, find the first entry > the given time (or end).
|
|
auto it = FindGreaterTime(time);
|
|
if (it == pairs_.cbegin()) {
|
|
return kUnknownSeqnoBeforeAll;
|
|
}
|
|
// Then return data from previous.
|
|
--it;
|
|
return it->seqno;
|
|
}
|
|
|
|
void SeqnoToTimeMapping::GetCurrentTieringCutoffSeqnos(
|
|
uint64_t current_time, uint64_t preserve_internal_time_seconds,
|
|
uint64_t preclude_last_level_data_seconds,
|
|
SequenceNumber* preserve_time_min_seqno,
|
|
SequenceNumber* preclude_last_level_min_seqno) const {
|
|
uint64_t preserve_time_duration = std::max(preserve_internal_time_seconds,
|
|
preclude_last_level_data_seconds);
|
|
if (preserve_time_duration <= 0) {
|
|
return;
|
|
}
|
|
uint64_t preserve_time = current_time > preserve_time_duration
|
|
? current_time - preserve_time_duration
|
|
: 0;
|
|
// GetProximalSeqnoBeforeTime tells us the last seqno known to have been
|
|
// written at or before the given time. + 1 to get the minimum we should
|
|
// preserve without excluding anything that might have been written on or
|
|
// after the given time.
|
|
if (preserve_time_min_seqno) {
|
|
*preserve_time_min_seqno = GetProximalSeqnoBeforeTime(preserve_time) + 1;
|
|
}
|
|
if (preclude_last_level_data_seconds > 0 && preclude_last_level_min_seqno) {
|
|
uint64_t preclude_last_level_time =
|
|
current_time > preclude_last_level_data_seconds
|
|
? current_time - preclude_last_level_data_seconds
|
|
: 0;
|
|
*preclude_last_level_min_seqno =
|
|
GetProximalSeqnoBeforeTime(preclude_last_level_time) + 1;
|
|
}
|
|
}
|
|
|
|
void SeqnoToTimeMapping::EnforceMaxTimeSpan(uint64_t now) {
|
|
assert(enforced_); // at least sorted
|
|
uint64_t cutoff_time;
|
|
if (pairs_.size() <= 1) {
|
|
return;
|
|
}
|
|
if (now > 0) {
|
|
if (now < max_time_span_) {
|
|
// Nothing eligible to prune / avoid underflow
|
|
return;
|
|
}
|
|
cutoff_time = now - max_time_span_;
|
|
} else {
|
|
const auto& last = pairs_.back();
|
|
if (last.time < max_time_span_) {
|
|
// Nothing eligible to prune / avoid underflow
|
|
return;
|
|
}
|
|
cutoff_time = last.time - max_time_span_;
|
|
}
|
|
// Keep one entry <= cutoff_time
|
|
while (pairs_.size() >= 2 && pairs_[0].time <= cutoff_time &&
|
|
pairs_[1].time <= cutoff_time) {
|
|
pairs_.pop_front();
|
|
}
|
|
}
|
|
|
|
void SeqnoToTimeMapping::EnforceCapacity(bool strict) {
|
|
assert(enforced_); // at least sorted
|
|
uint64_t strict_cap = capacity_;
|
|
if (strict_cap == 0) {
|
|
pairs_.clear();
|
|
return;
|
|
}
|
|
// Treat cap of 1 as 2 to work with the below algorithm (etc.)
|
|
if (strict_cap == 1) {
|
|
strict_cap = 2;
|
|
}
|
|
// When !strict, allow being over nominal capacity by a modest fraction.
|
|
uint64_t effective_cap = strict_cap + (strict ? 0 : strict_cap / 8);
|
|
if (effective_cap < strict_cap) {
|
|
// Correct overflow
|
|
effective_cap = UINT64_MAX;
|
|
}
|
|
if (pairs_.size() <= effective_cap) {
|
|
return;
|
|
}
|
|
// The below algorithm expects at least one removal candidate between first
|
|
// and last.
|
|
assert(pairs_.size() >= 3);
|
|
size_t to_remove_count = pairs_.size() - strict_cap;
|
|
|
|
struct RemovalCandidate {
|
|
uint64_t new_time_gap;
|
|
std::deque<SeqnoTimePair>::iterator it;
|
|
RemovalCandidate(uint64_t _new_time_gap,
|
|
std::deque<SeqnoTimePair>::iterator _it)
|
|
: new_time_gap(_new_time_gap), it(_it) {}
|
|
bool operator>(const RemovalCandidate& other) const {
|
|
if (new_time_gap == other.new_time_gap) {
|
|
// If same gap, treat the newer entry as less attractive
|
|
// for removal (like larger gap)
|
|
return it->seqno > other.it->seqno;
|
|
}
|
|
return new_time_gap > other.new_time_gap;
|
|
}
|
|
};
|
|
|
|
// A priority queue of best removal candidates (smallest time gap remaining
|
|
// after removal)
|
|
using RC = RemovalCandidate;
|
|
using PQ = std::priority_queue<RC, std::vector<RC>, std::greater<RC>>;
|
|
PQ pq;
|
|
|
|
// Add all the candidates (not including first and last)
|
|
{
|
|
auto it = pairs_.begin();
|
|
assert(it->time != kUnknownTimeBeforeAll);
|
|
uint64_t prev_prev_time = it->time;
|
|
++it;
|
|
assert(it->time != kUnknownTimeBeforeAll);
|
|
auto prev_it = it;
|
|
++it;
|
|
while (it != pairs_.end()) {
|
|
assert(it->time != kUnknownTimeBeforeAll);
|
|
uint64_t gap = it->time - prev_prev_time;
|
|
pq.emplace(gap, prev_it);
|
|
prev_prev_time = prev_it->time;
|
|
prev_it = it;
|
|
++it;
|
|
}
|
|
}
|
|
|
|
// Greedily remove the best candidate, iteratively
|
|
while (to_remove_count > 0) {
|
|
assert(!pq.empty());
|
|
// Remove the candidate with smallest gap
|
|
auto rc = pq.top();
|
|
pq.pop();
|
|
|
|
// NOTE: priority_queue does not support updating an existing element,
|
|
// but we can work around that because the gap tracked in pq is only
|
|
// going to be better than actuality, and we can detect and adjust
|
|
// when a better-than-actual gap is found.
|
|
|
|
// Determine actual time gap if this entry is removed (zero entries are
|
|
// marked for deletion)
|
|
auto it = rc.it + 1;
|
|
uint64_t after_time = it->time;
|
|
while (after_time == kUnknownTimeBeforeAll) {
|
|
assert(it != pairs_.end());
|
|
++it;
|
|
after_time = it->time;
|
|
}
|
|
it = rc.it - 1;
|
|
uint64_t before_time = it->time;
|
|
while (before_time == kUnknownTimeBeforeAll) {
|
|
assert(it != pairs_.begin());
|
|
--it;
|
|
before_time = it->time;
|
|
}
|
|
// Check whether the gap is still valid (or needs to be recomputed)
|
|
if (rc.new_time_gap == after_time - before_time) {
|
|
// Mark the entry as removed
|
|
rc.it->time = kUnknownTimeBeforeAll;
|
|
--to_remove_count;
|
|
} else {
|
|
// Insert a replacement up-to-date removal candidate
|
|
pq.emplace(after_time - before_time, rc.it);
|
|
}
|
|
}
|
|
|
|
// Collapse away entries marked for deletion
|
|
auto from_it = pairs_.begin();
|
|
auto to_it = from_it;
|
|
|
|
for (; from_it != pairs_.end(); ++from_it) {
|
|
if (from_it->time != kUnknownTimeBeforeAll) {
|
|
if (from_it != to_it) {
|
|
*to_it = *from_it;
|
|
}
|
|
++to_it;
|
|
}
|
|
}
|
|
|
|
// Erase slots freed up
|
|
pairs_.erase(to_it, pairs_.end());
|
|
assert(pairs_.size() == strict_cap);
|
|
}
|
|
|
|
bool SeqnoToTimeMapping::SeqnoTimePair::Merge(const SeqnoTimePair& other) {
|
|
assert(seqno <= other.seqno);
|
|
if (seqno == other.seqno) {
|
|
// Favoring GetProximalSeqnoBeforeTime over GetProximalTimeBeforeSeqno
|
|
// by keeping the older time. For example, consider nothing has been
|
|
// written to the DB in some time.
|
|
time = std::min(time, other.time);
|
|
return true;
|
|
} else if (time == other.time) {
|
|
// Favoring GetProximalSeqnoBeforeTime over GetProximalTimeBeforeSeqno
|
|
// by keeping the newer seqno. For example, when a burst of writes ages
|
|
// out, we want the cutoff to be the newest seqno from that burst.
|
|
seqno = std::max(seqno, other.seqno);
|
|
return true;
|
|
} else if (time > other.time) {
|
|
assert(seqno < other.seqno);
|
|
// Need to resolve an inconsistency (clock drift? very rough time?).
|
|
// Given the direction that entries are supposed to err, trust the earlier
|
|
// time entry as more reliable, and this choice ensures we don't
|
|
// accidentally throw out an entry within our time span.
|
|
*this = other;
|
|
return true;
|
|
} else {
|
|
// Not merged
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void SeqnoToTimeMapping::SortAndMerge() {
|
|
assert(!enforced_);
|
|
if (!pairs_.empty()) {
|
|
std::sort(pairs_.begin(), pairs_.end());
|
|
|
|
auto from_it = pairs_.begin();
|
|
auto to_it = from_it;
|
|
for (++from_it; from_it != pairs_.end(); ++from_it) {
|
|
if (to_it->Merge(*from_it)) {
|
|
// Merged with last entry
|
|
} else {
|
|
// Copy into next entry
|
|
*++to_it = *from_it;
|
|
}
|
|
}
|
|
// Erase slots freed up from merging
|
|
pairs_.erase(to_it + 1, pairs_.end());
|
|
}
|
|
// Mark as "at least sorted"
|
|
enforced_ = true;
|
|
}
|
|
|
|
SeqnoToTimeMapping& SeqnoToTimeMapping::SetMaxTimeSpan(uint64_t max_time_span) {
|
|
max_time_span_ = max_time_span;
|
|
if (enforced_) {
|
|
EnforceMaxTimeSpan();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
SeqnoToTimeMapping& SeqnoToTimeMapping::SetCapacity(uint64_t capacity) {
|
|
capacity_ = capacity;
|
|
if (enforced_) {
|
|
EnforceCapacity(/*strict=*/true);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
SeqnoToTimeMapping& SeqnoToTimeMapping::Enforce(uint64_t now) {
|
|
if (!enforced_) {
|
|
SortAndMerge();
|
|
assert(enforced_);
|
|
EnforceMaxTimeSpan(now);
|
|
} else if (now > 0) {
|
|
EnforceMaxTimeSpan(now);
|
|
}
|
|
EnforceCapacity(/*strict=*/true);
|
|
return *this;
|
|
}
|
|
|
|
void SeqnoToTimeMapping::AddUnenforced(SequenceNumber seqno, uint64_t time) {
|
|
if (seqno == 0) {
|
|
return;
|
|
}
|
|
enforced_ = false;
|
|
pairs_.emplace_back(seqno, time);
|
|
}
|
|
|
|
// The encoded format is:
|
|
// [num_of_entries][[seqno][time],[seqno][time],...]
|
|
// ^ ^
|
|
// var_int delta_encoded (var_int)
|
|
// Except empty string is used for empty mapping. This means the encoding
|
|
// doesn't fully form a prefix code, but that is OK for applications like
|
|
// TableProperties.
|
|
void SeqnoToTimeMapping::EncodeTo(std::string& dest) const {
|
|
assert(enforced_);
|
|
// Can use empty string for empty mapping
|
|
if (pairs_.empty()) {
|
|
return;
|
|
}
|
|
// Encode number of entries
|
|
PutVarint64(&dest, pairs_.size());
|
|
SeqnoTimePair base;
|
|
for (auto& cur : pairs_) {
|
|
assert(base < cur);
|
|
// Delta encode each entry
|
|
SeqnoTimePair val = cur.ComputeDelta(base);
|
|
base = cur;
|
|
val.Encode(dest);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
Status DecodeImpl(Slice& input,
|
|
std::deque<SeqnoToTimeMapping::SeqnoTimePair>& pairs) {
|
|
if (input.empty()) {
|
|
return Status::OK();
|
|
}
|
|
uint64_t count;
|
|
if (!GetVarint64(&input, &count)) {
|
|
return Status::Corruption("Invalid sequence number time size");
|
|
}
|
|
|
|
SeqnoToTimeMapping::SeqnoTimePair base;
|
|
for (uint64_t i = 0; i < count; i++) {
|
|
SeqnoToTimeMapping::SeqnoTimePair val;
|
|
Status s = val.Decode(input);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
val.ApplyDelta(base);
|
|
pairs.emplace_back(val);
|
|
base = val;
|
|
}
|
|
|
|
if (!input.empty()) {
|
|
return Status::Corruption(
|
|
"Extra bytes at end of sequence number time mapping");
|
|
}
|
|
return Status::OK();
|
|
}
|
|
} // namespace
|
|
|
|
Status SeqnoToTimeMapping::DecodeFrom(const std::string& pairs_str) {
|
|
size_t orig_size = pairs_.size();
|
|
|
|
Slice input(pairs_str);
|
|
Status s = DecodeImpl(input, pairs_);
|
|
if (!s.ok()) {
|
|
// Roll back in case of corrupted data
|
|
pairs_.resize(orig_size);
|
|
} else if (orig_size > 0 || max_time_span_ < UINT64_MAX ||
|
|
capacity_ < UINT64_MAX) {
|
|
enforced_ = false;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
void SeqnoToTimeMapping::SeqnoTimePair::Encode(std::string& dest) const {
|
|
PutVarint64Varint64(&dest, seqno, time);
|
|
}
|
|
|
|
Status SeqnoToTimeMapping::SeqnoTimePair::Decode(Slice& input) {
|
|
if (!GetVarint64(&input, &seqno)) {
|
|
return Status::Corruption("Invalid sequence number");
|
|
}
|
|
if (!GetVarint64(&input, &time)) {
|
|
return Status::Corruption("Invalid time");
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
void SeqnoToTimeMapping::CopyFromSeqnoRange(const SeqnoToTimeMapping& src,
|
|
SequenceNumber from_seqno,
|
|
SequenceNumber to_seqno) {
|
|
bool orig_empty = Empty();
|
|
auto src_it = src.FindGreaterEqSeqno(from_seqno);
|
|
// Allow nonsensical ranges like [1000, 0] which might show up e.g. for
|
|
// an SST file with no entries.
|
|
auto src_it_end =
|
|
to_seqno < from_seqno ? src_it : src.FindGreaterSeqno(to_seqno);
|
|
// To best answer GetProximalTimeBeforeSeqno(from_seqno) we need an entry
|
|
// with a seqno before that (if available)
|
|
if (src_it != src.pairs_.begin()) {
|
|
--src_it;
|
|
}
|
|
assert(src_it <= src_it_end);
|
|
std::copy(src_it, src_it_end, std::back_inserter(pairs_));
|
|
|
|
if (!orig_empty || max_time_span_ < UINT64_MAX || capacity_ < UINT64_MAX) {
|
|
enforced_ = false;
|
|
}
|
|
}
|
|
|
|
bool SeqnoToTimeMapping::Append(SequenceNumber seqno, uint64_t time) {
|
|
if (capacity_ == 0) {
|
|
return false;
|
|
}
|
|
bool added = false;
|
|
if (seqno == 0) {
|
|
// skip seq number 0, which may have special meaning, like zeroed out data
|
|
// TODO: consider changing?
|
|
} else if (pairs_.empty()) {
|
|
enforced_ = true;
|
|
pairs_.emplace_back(seqno, time);
|
|
// skip normal enforced check below
|
|
return true;
|
|
} else {
|
|
auto& last = pairs_.back();
|
|
// We can attempt to merge with the last entry if the new entry sorts with
|
|
// it.
|
|
if (last.seqno <= seqno) {
|
|
bool merged = last.Merge({seqno, time});
|
|
if (!merged) {
|
|
if (enforced_ && (seqno <= last.seqno || time <= last.time)) {
|
|
// Out of order append should not happen, except in case of clock
|
|
// reset
|
|
assert(false);
|
|
} else {
|
|
pairs_.emplace_back(seqno, time);
|
|
added = true;
|
|
}
|
|
}
|
|
} else if (!enforced_) {
|
|
// Treat like AddUnenforced and fix up below
|
|
pairs_.emplace_back(seqno, time);
|
|
added = true;
|
|
} else {
|
|
// Out of order append attempted
|
|
assert(false);
|
|
}
|
|
}
|
|
// Similar to Enforce() but not quite
|
|
if (!enforced_) {
|
|
SortAndMerge();
|
|
assert(enforced_);
|
|
}
|
|
EnforceMaxTimeSpan();
|
|
EnforceCapacity(/*strict=*/false);
|
|
return added;
|
|
}
|
|
|
|
void SeqnoToTimeMapping::PrePopulate(SequenceNumber from_seqno,
|
|
SequenceNumber to_seqno,
|
|
uint64_t from_time, uint64_t to_time) {
|
|
assert(Empty());
|
|
assert(from_seqno > 0);
|
|
assert(to_seqno > from_seqno);
|
|
assert(from_time > kUnknownTimeBeforeAll);
|
|
assert(to_time >= from_time);
|
|
|
|
// TODO: smartly limit this to max_capacity_ representative samples
|
|
for (auto i = from_seqno; i <= to_seqno; i++) {
|
|
uint64_t t = from_time + (to_time - from_time) * (i - from_seqno) /
|
|
(to_seqno - from_seqno);
|
|
pairs_.emplace_back(i, t);
|
|
}
|
|
}
|
|
|
|
std::string SeqnoToTimeMapping::ToHumanString() const {
|
|
std::string ret;
|
|
for (const auto& seq_time : pairs_) {
|
|
AppendNumberTo(&ret, seq_time.seqno);
|
|
ret.append("->");
|
|
AppendNumberTo(&ret, seq_time.time);
|
|
ret.append(",");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Slice PackValueAndWriteTime(const Slice& value, uint64_t unix_write_time,
|
|
std::string* buf) {
|
|
buf->assign(value.data(), value.size());
|
|
PutFixed64(buf, unix_write_time);
|
|
return Slice(*buf);
|
|
}
|
|
|
|
Slice PackValueAndSeqno(const Slice& value, SequenceNumber seqno,
|
|
std::string* buf) {
|
|
buf->assign(value.data(), value.size());
|
|
PutFixed64(buf, seqno);
|
|
return Slice(*buf);
|
|
}
|
|
|
|
uint64_t ParsePackedValueForWriteTime(const Slice& value) {
|
|
assert(value.size() >= sizeof(uint64_t));
|
|
Slice write_time_slice(value.data() + value.size() - sizeof(uint64_t),
|
|
sizeof(uint64_t));
|
|
uint64_t write_time;
|
|
[[maybe_unused]] auto res = GetFixed64(&write_time_slice, &write_time);
|
|
assert(res);
|
|
return write_time;
|
|
}
|
|
|
|
std::tuple<Slice, uint64_t> ParsePackedValueWithWriteTime(const Slice& value) {
|
|
return std::make_tuple(Slice(value.data(), value.size() - sizeof(uint64_t)),
|
|
ParsePackedValueForWriteTime(value));
|
|
}
|
|
|
|
SequenceNumber ParsePackedValueForSeqno(const Slice& value) {
|
|
assert(value.size() >= sizeof(SequenceNumber));
|
|
Slice seqno_slice(value.data() + value.size() - sizeof(uint64_t),
|
|
sizeof(uint64_t));
|
|
SequenceNumber seqno;
|
|
[[maybe_unused]] auto res = GetFixed64(&seqno_slice, &seqno);
|
|
assert(res);
|
|
return seqno;
|
|
}
|
|
|
|
std::tuple<Slice, SequenceNumber> ParsePackedValueWithSeqno(
|
|
const Slice& value) {
|
|
return std::make_tuple(
|
|
Slice(value.data(), value.size() - sizeof(SequenceNumber)),
|
|
ParsePackedValueForSeqno(value));
|
|
}
|
|
|
|
Slice ParsePackedValueForValue(const Slice& value) {
|
|
assert(value.size() >= sizeof(uint64_t));
|
|
return Slice(value.data(), value.size() - sizeof(uint64_t));
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|