rocksdb/util/aligned_buffer.h
Andrew Chang 4ac7fcb033 Add comment clarifying proper use of fs_scratch (#13189)
Summary:
https://github.com/facebook/rocksdb/pull/13182 seems to have resolved the `heap-use-after-free` / `heap-buffer-overflow` issues, but not for the reasons we had in mind.

I believe I have figured out the root cause after doing more thinking / reading into the warm storage code.

**`fs_scratch` cannot be assumed to point to the start of the data buffer. It must be treated as a pointer to any arbitrary object / data structure. As such, we must rely only on result.data().**

I think that part of the reason for the bug was that the comment for `fs_scratch` was

> fs_scratch is a data buffer allocated and provided by underlying FileSystem

which is _extremely misleading_.

To avoid confusion in the future, I have updated the comments related to `FsReadRequest` with some of my learnings and included `WARNING`s in all caps to hopefully steer future engineers aware from the same issue.

In another PR, I will update some of our mock file system test classes that support `FSSupportedOps::kFSBuffer`. The test class implementation also contributed to my confusion, since `fs_scratch` did point to the start of the valid data in those implementations. This cannot and should not be assumed to be true in general, and we should try to guard against potential future bugs by updating those mock implementations.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/13189

Test Plan: These are just comments.

Reviewed By: anand1976, hx235

Differential Revision: D66849436

Pulled By: archang19

fbshipit-source-id: c264007647af9cc2a4dfd58dbe7287af86fa2261
2024-12-06 10:15:18 -08:00

254 lines
8.5 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <algorithm>
#include <cassert>
#include "port/port.h"
#include "rocksdb/file_system.h"
namespace ROCKSDB_NAMESPACE {
// This file contains utilities to handle the alignment of pages and buffers.
// Truncate to a multiple of page_size, which is also a page boundary. This
// helps to figuring out the right alignment.
// Example:
// TruncateToPageBoundary(4096, 5000) => 4096
// TruncateToPageBoundary((4096, 10000) => 8192
inline size_t TruncateToPageBoundary(size_t page_size, size_t s) {
s -= (s & (page_size - 1));
assert((s % page_size) == 0);
return s;
}
// Round up x to a multiple of y.
// Example:
// Roundup(13, 5) => 15
// Roundup(201, 16) => 208
inline size_t Roundup(size_t x, size_t y) { return ((x + y - 1) / y) * y; }
// Round down x to a multiple of y.
// Example:
// Rounddown(13, 5) => 10
// Rounddown(201, 16) => 192
inline size_t Rounddown(size_t x, size_t y) { return (x / y) * y; }
// AlignedBuffer manages a buffer by taking alignment into consideration, and
// aligns the buffer start and end positions. It is mainly used for direct I/O,
// though it can be used other purposes as well.
// It also supports expanding the managed buffer, and copying whole or part of
// the data from old buffer into the new expanded buffer. Such a copy especially
// helps in cases avoiding an IO to re-fetch the data from disk.
//
// Example:
// AlignedBuffer buf;
// buf.Alignment(alignment);
// buf.AllocateNewBuffer(user_requested_buf_size);
// ...
// buf.AllocateNewBuffer(2*user_requested_buf_size, /*copy_data*/ true,
// copy_offset, copy_len);
class AlignedBuffer {
size_t alignment_;
FSAllocationPtr buf_;
size_t capacity_;
size_t cursize_;
char* bufstart_;
public:
AlignedBuffer()
: alignment_(), capacity_(0), cursize_(0), bufstart_(nullptr) {}
AlignedBuffer(AlignedBuffer&& o) noexcept { *this = std::move(o); }
AlignedBuffer& operator=(AlignedBuffer&& o) noexcept {
alignment_ = std::move(o.alignment_);
buf_ = std::move(o.buf_);
capacity_ = std::move(o.capacity_);
cursize_ = std::move(o.cursize_);
bufstart_ = std::move(o.bufstart_);
return *this;
}
AlignedBuffer(const AlignedBuffer&) = delete;
AlignedBuffer& operator=(const AlignedBuffer&) = delete;
static bool isAligned(const void* ptr, size_t alignment) {
return reinterpret_cast<uintptr_t>(ptr) % alignment == 0;
}
static bool isAligned(size_t n, size_t alignment) {
return n % alignment == 0;
}
size_t Alignment() const { return alignment_; }
size_t Capacity() const { return capacity_; }
size_t CurrentSize() const { return cursize_; }
const char* BufferStart() const { return bufstart_; }
char* BufferStart() { return bufstart_; }
void Clear() { cursize_ = 0; }
FSAllocationPtr Release() {
cursize_ = 0;
capacity_ = 0;
bufstart_ = nullptr;
return std::move(buf_);
}
void Alignment(size_t alignment) {
assert(alignment > 0);
assert((alignment & (alignment - 1)) == 0);
alignment_ = alignment;
}
// Points the buffer to the result without allocating extra
// memory or performing any data copies. Takes ownership of the
// FSAllocationPtr. This method is called when we want to reuse the buffer
// provided by the file system
void SetBuffer(Slice& result, FSAllocationPtr new_buf) {
alignment_ = 1;
capacity_ = result.size();
cursize_ = result.size();
buf_ = std::move(new_buf);
assert(buf_.get() != nullptr);
// Note: bufstart_ must point to result.data() and not new_buf, which can
// point to any arbitrary object
bufstart_ = const_cast<char*>(result.data());
}
// Allocates a new buffer and sets the start position to the first aligned
// byte.
//
// requested_capacity: requested new buffer capacity. This capacity will be
// rounded up based on alignment.
// copy_data: Copy data from old buffer to new buffer. If copy_offset and
// copy_len are not passed in and the new requested capacity is bigger
// than the existing buffer's capacity, the data in the exising buffer is
// fully copied over to the new buffer.
// copy_offset: Copy data from this offset in old buffer.
// copy_len: Number of bytes to copy.
//
// The function does nothing if the new requested_capacity is smaller than
// the current buffer capacity and copy_data is true i.e. the old buffer is
// retained as is.
void AllocateNewBuffer(size_t requested_capacity, bool copy_data = false,
uint64_t copy_offset = 0, size_t copy_len = 0) {
assert(alignment_ > 0);
assert((alignment_ & (alignment_ - 1)) == 0);
copy_len = copy_len > 0 ? copy_len : cursize_;
if (copy_data && requested_capacity < copy_len) {
// If we are downsizing to a capacity that is smaller than the current
// data in the buffer -- Ignore the request.
return;
}
size_t new_capacity = Roundup(requested_capacity, alignment_);
char* new_buf = new char[new_capacity + alignment_];
char* new_bufstart = reinterpret_cast<char*>(
(reinterpret_cast<uintptr_t>(new_buf) + (alignment_ - 1)) &
~static_cast<uintptr_t>(alignment_ - 1));
if (copy_data) {
assert(bufstart_ + copy_offset + copy_len <= bufstart_ + cursize_);
memcpy(new_bufstart, bufstart_ + copy_offset, copy_len);
cursize_ = copy_len;
} else {
cursize_ = 0;
}
bufstart_ = new_bufstart;
capacity_ = new_capacity;
// buf_ is a FSAllocationPtr which takes in a deleter
// we can just wrap the regular default delete that would have been called
buf_ = std::unique_ptr<void, std::function<void(void*)>>(
static_cast<void*>(new_buf),
[](void* p) { delete[] static_cast<char*>(p); });
}
// Append to the buffer.
//
// src : source to copy the data from.
// append_size : number of bytes to copy from src.
// Returns the number of bytes appended.
//
// If append_size is more than the remaining buffer size only the
// remaining-size worth of bytes are copied.
size_t Append(const char* src, size_t append_size) {
size_t buffer_remaining = capacity_ - cursize_;
size_t to_copy = std::min(append_size, buffer_remaining);
if (to_copy > 0) {
memcpy(bufstart_ + cursize_, src, to_copy);
cursize_ += to_copy;
}
return to_copy;
}
// Read from the buffer.
//
// dest : destination buffer to copy the data to.
// offset : the buffer offset to start reading from.
// read_size : the number of bytes to copy from the buffer to dest.
// Returns the number of bytes read/copied to dest.
size_t Read(char* dest, size_t offset, size_t read_size) const {
assert(offset < cursize_);
size_t to_read = 0;
if (offset < cursize_) {
to_read = std::min(cursize_ - offset, read_size);
}
if (to_read > 0) {
memcpy(dest, bufstart_ + offset, to_read);
}
return to_read;
}
// Pad to the end of alignment with "padding"
void PadToAlignmentWith(int padding) {
size_t total_size = Roundup(cursize_, alignment_);
size_t pad_size = total_size - cursize_;
if (pad_size > 0) {
assert((pad_size + cursize_) <= capacity_);
memset(bufstart_ + cursize_, padding, pad_size);
cursize_ += pad_size;
}
}
void PadWith(size_t pad_size, int padding) {
assert((pad_size + cursize_) <= capacity_);
memset(bufstart_ + cursize_, padding, pad_size);
cursize_ += pad_size;
}
// After a partial flush move the tail to the beginning of the buffer.
void RefitTail(size_t tail_offset, size_t tail_size) {
if (tail_size > 0) {
memmove(bufstart_, bufstart_ + tail_offset, tail_size);
}
cursize_ = tail_size;
}
// Returns a place to start appending.
// WARNING: Note that it is possible to write past the end of the buffer if
// the buffer is modified without using the write APIs or encapsulation
// offered by AlignedBuffer. It is up to the user to guard against such
// errors.
char* Destination() { return bufstart_ + cursize_; }
void Size(size_t cursize) { cursize_ = cursize; }
};
} // namespace ROCKSDB_NAMESPACE